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Abstract
Let 𝑛, 𝑑 be integers with 1 ≤ 𝑑 ≤ ⌊ 𝑛−1

2 ⌋, and set ℎ(𝑛, 𝑑) ∶=(𝑛−𝑑

2

)
+ 𝑑2. Erdős proved that when 𝑛 ≥ 6𝑑, each 𝑛-vertex

nonhamiltonian graph 𝐺 with minimum degree 𝛿(𝐺) ≥ 𝑑

has at most ℎ(𝑛, 𝑑) edges. He also provides a sharpness

example 𝐻𝑛,𝑑 for all such pairs 𝑛, 𝑑. Previously, we showed

a stability version of this result: for 𝑛 large enough, every

nonhamiltonian graph 𝐺 on 𝑛 vertices with 𝛿(𝐺) ≥ 𝑑 and

more than ℎ(𝑛, 𝑑 + 1) edges is a subgraph of 𝐻𝑛,𝑑 . In this

article, we show that not only does the graph 𝐻𝑛,𝑑 maxi-

mize the number of edges among nonhamiltonian graphs

with 𝑛 vertices and minimum degree at least 𝑑, but in

fact it maximizes the number of copies of any fixed graph

𝐹 when 𝑛 is sufficiently large in comparison with 𝑑 and|𝐹 |. We also show a stronger stability theorem, that is, we

classify all nonhamiltonian 𝑛-vertex graphs with 𝛿(𝐺) ≥ 𝑑

and more than ℎ(𝑛, 𝑑 + 2) edges. We show this by prov-

ing a more general theorem: we describe all such graphs

with more than
(𝑛−(𝑑+2)

𝑘

)
+ (𝑑 + 2)

(𝑑+2
𝑘−1

)
copies of 𝐾𝑘 for

any 𝑘.

K E Y W O R D S
extremal graph theory, hamiltonian cycles, subgraph density
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1 INTRODUCTION

Let 𝑉 (𝐺) denote the vertex set of a graph 𝐺, 𝐸(𝐺) denote the edge set of 𝐺, and 𝑒(𝐺) = |𝐸(𝐺)|. Also,
if 𝑣 ∈ 𝑉 (𝐺), then 𝑁(𝑣) is the neighborhood of 𝑣 and 𝑑(𝑣) = |𝑁(𝑣)|. If 𝑣 ∈ 𝑉 (𝐺) and 𝐷 ⊂ 𝑉 (𝐺) then
for shortness we will write 𝐷 + 𝑣 to denote 𝐷 ∪ {𝑣}. For 𝑘, 𝑡 ∈ ℕ, (𝑘)𝑡 denotes the falling factorial
𝑘(𝑘 − 1)… (𝑘 − 𝑡 + 1) = 𝑘!

(𝑘−𝑡)! .
The first Turán-type result for nonhamiltonian graphs was due to Ore [12]:

Theorem 1 (Ore [12]). If 𝐺 is a nonhamiltonian graph on 𝑛 vertices, then 𝑒(𝐺) ≤
(𝑛−1

2

)
+ 1.

This bound is achieved only for the 𝑛-vertex graph obtained from the complete graph 𝐾𝑛−1 by adding
a vertex of degree 1. Erdős [4] refined the bound in terms of the minimum degree of the graph:

Theorem 2 (Erdős [4]). Let 𝑛, 𝑑 be integers with 1 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋, and set ℎ(𝑛, 𝑑) ∶=

(𝑛−𝑑

2

)
+ 𝑑2. If 𝐺

is a nonhamiltonian graph on 𝑛 vertices with minimum degree 𝛿(𝐺) ≥ 𝑑, then

𝑒(𝐺) ≤ max
{
ℎ(𝑛, 𝑑), ℎ

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
=∶ 𝑒(𝑛, 𝑑).

This bound is sharp for all 1 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋.

To show the sharpness of the bound, for 𝑛, 𝑑 ∈ ℕ with 𝑑 ≤ ⌊ 𝑛−1
2 ⌋, consider the graph 𝐻𝑛,𝑑 obtained

from a copy of 𝐾𝑛−𝑑 , say with vertex set 𝐴, by adding 𝑑 vertices of degree 𝑑 each of which is adjacent
to the same 𝑑 vertices in 𝐴. An example of 𝐻11,3 is on the left of Fig. 1.

By construction, 𝐻𝑛,𝑑 has minimum degree 𝑑, is nonhamiltonian, and 𝑒(𝐻𝑛,𝑑) =
(𝑛−𝑑

2

)
+ 𝑑2 =

ℎ(𝑛, 𝑑). Elementary calculation shows that ℎ(𝑛, 𝑑) > ℎ(𝑛, ⌊ 𝑛−1
2 ⌋) in the range 1 ≤ 𝑑 ≤ ⌊ 𝑛−1

2 ⌋ if and
only if 𝑑 < (𝑛 + 1)∕6 and 𝑛 is odd or 𝑑 < (𝑛 + 4)∕6 and 𝑛 is even. Hence there exists a 𝑑0 ∶= 𝑑0(𝑛)
such that

𝑒(𝑛, 1) > 𝑒(𝑛, 2) > … > 𝑒(𝑛, 𝑑0) = 𝑒(𝑛, 𝑑0 + 1) = ⋯ = 𝑒

(
𝑛,

⌊
𝑛 − 1
2

⌋)
,

where 𝑑0(𝑛) ∶= ⌈ 𝑛+1
6 ⌉ if 𝑛 is odd, and 𝑑0(𝑛) ∶= ⌈ 𝑛+4

6 ⌉ if 𝑛 is even. Therefore 𝐻𝑛,𝑑 is an extremal
example of Theorem 2 when 𝑑 < 𝑑0 and 𝐻𝑛,⌊(𝑛−1)∕2⌋ when 𝑑 ≥ 𝑑0.

In [10] and independently in [6] a stability theorem for nonhamiltonian graphs with prescribed min-
imum degree was proved. Let 𝐾 ′

𝑛,𝑑
denote the edge-disjoint union of 𝐾𝑛−𝑑 and 𝐾𝑑+1 sharing a single

vertex. An example of 𝐾 ′
11,3 is on the right of Fig. 1.

F I G U R E 1 Graphs 𝐻11,3 (left) and 𝐾
′

11,3 (right)
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178 FÜREDI ET AL.

Theorem 3 ([6,10]). Let 𝑛 ≥ 3 and 𝑑 ≤ ⌊ 𝑛−1
2 ⌋. Suppose that 𝐺 is an 𝑛-vertex nonhamiltonian graph

with minimum degree 𝛿(𝐺) ≥ 𝑑 such that

𝑒(𝐺) > 𝑒(𝑛, 𝑑 + 1) = max
{
ℎ(𝑛, 𝑑 + 1), ℎ

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
. (1)

Then 𝐺 is a subgraph of either 𝐻𝑛,𝑑 or 𝐾 ′
𝑛,𝑑

.

One of the main results of this article shows that when 𝑛 is large enough with respect to 𝑑 and 𝑡,
among then 𝑛-vertex nonhamiltonian graphs with minimum degree at least 𝑑, 𝐻𝑛,𝑑 not only has the
most edges but also contains the most copies of any 𝑡-vertex graph. This is an instance of a gener-
alization of the Turán problem called subgraph density problem: for 𝑛 ∈ ℕ and graphs 𝐹 and 𝐻 , let
𝑒𝑥(𝑛, 𝐹 ,𝐻) denote the maximum possible number of (unlabeled) copies of 𝐹 in an 𝑛-vertex 𝐻-free
graph. When 𝐹 = 𝐾2, we have the usual extremal number 𝑒𝑥(𝑛, 𝐹 ,𝐻) = 𝑒𝑥(𝑛,𝐻).

Some notable results on the function 𝑒𝑥(𝑛, 𝐹 ,𝐻) for various combinations of 𝐹 and 𝐻 were obtained
in [1,2,5,7–9]. In particular, Erdős [5] determined 𝑒𝑥(𝑛,𝐾𝑠,𝐾𝑡), Bollobás and Győri [2] found the order
of magnitude of 𝑒𝑥(𝑛, 𝐶3, 𝐶5), Alon and Shikhelman [1] presented a series of bounds on 𝑒𝑥(𝑛, 𝐹 ,𝐻)
for different classes of 𝐹 and 𝐻 .

In this article, we study the maximum number of copies of 𝐹 in nonhamiltonian 𝑛-vertex graphs,
i.e. 𝑒𝑥(𝑛, 𝐹 , 𝐶𝑛). For two graphs 𝐺 and 𝐹 , let 𝑁(𝐺,𝐹 ) denote the number of labeled copies of 𝐹 that
are subgraphs of 𝐺, i.e. the number of injections 𝜙 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐺) such that for each 𝑥𝑦 ∈ 𝐸(𝐹 ),
𝜙(𝑥)𝜙(𝑦) ∈ 𝐸(𝐺). Since for every 𝐹 and 𝐻 , |𝐴𝑢𝑡(𝐹 )| 𝑒𝑥(𝑛, 𝐹 ,𝐻) is the maximum of 𝑁(𝐺,𝐹 ) over
the 𝑛-vertex graphs 𝐺 not containing 𝐻 , some of our results are in the language of labeled copies of 𝐹
in 𝐺. For 𝑘 ∈ ℕ, let 𝑁𝑘(𝐺) denote the number of unlabeled copies of 𝐾𝑘's in 𝐺. Since |𝐴𝑢𝑡(𝐾𝑘)| = 𝑘!,
we have 𝑁𝑘(𝐺) = 𝑁(𝐺,𝐾𝑘)∕𝑘!.

2 RESULTS

As an extension of Theorem 2, we show that for each fixed graph 𝐹 and any 𝑑, if 𝑛 is large enough
with respect to |𝑉 (𝐹 )| and 𝑑, then among all 𝑛-vertex nonhamiltonian graphs with minimum degree
at least 𝑑, 𝐻𝑛,𝑑 contains the maximum number of copies of 𝐹 .

Theorem 4. For every graph 𝐹 with 𝑡 ∶= |𝑉 (𝐹 )| ≥ 3, any 𝑑 ∈ ℕ, and any 𝑛 ≥ 𝑛0(𝑑, 𝑡) ∶= 4𝑑𝑡 +
3𝑑2 + 5𝑡, if 𝐺 is an 𝑛-vertex nonhamiltonian graph with minimum degree 𝛿(𝐺) ≥ 𝑑, then 𝑁(𝐺,𝐹 ) ≤
𝑁(𝐻𝑛,𝑑, 𝐹 ).

On the other hand, if 𝐹 is a star 𝐾1,𝑡−1 and 𝑛 ≤ 𝑑𝑡 − 𝑑, then 𝐻𝑛,𝑑 does not maximize 𝑁(𝐺,𝐹 ). At
the end of Section 4, we show that in this case, 𝑁(𝐻𝑛,⌊(𝑛−1)∕2⌋, 𝐹 ) > 𝑁(𝐻𝑛,𝑑, 𝐹 ). So, the bound on
𝑛0(𝑑, 𝑡) in Theorem 4 has the right order of magnitude when 𝑑 = 𝑂(𝑡).

An immediate corollary of Theorem 4 is the following generalization of Theorem 1

Corollary 5. For every graph 𝐹 with 𝑡 ∶= |𝑉 (𝐹 )| ≥ 3 and any 𝑛 ≥ 𝑛0(𝑡) ∶= 9𝑡 + 3, if 𝐺 is an 𝑛-vertex
nonhamiltonian graph, then 𝑁(𝐺,𝐹 ) ≤ 𝑁(𝐻𝑛,1, 𝐹 ).

We consider the case that 𝐹 is a clique in more detail. For 𝑛, 𝑘 ∈ ℕ, define on the interval [1, ⌊(𝑛 −
1)∕2⌋] the function

ℎ𝑘(𝑛, 𝑥) ∶=
(
𝑛 − 𝑥

𝑘

)
+ 𝑥

(
𝑥

𝑘 − 1

)
. (2)
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FÜREDI ET AL. 179

d d d d d + 1

F I G U R E 2 Graphs 𝐻𝑛,𝑑 (left), 𝐾 ′
𝑛,𝑑

(center), and 𝐻 ′
𝑛,𝑑

(right), where shaded background indicates a complete

graph

We use the convention that for 𝑎 ∈ ℝ, 𝑏 ∈ ℕ,
(𝑎
𝑏

)
is the polynomial 1

𝑏!𝑎 × (𝑎 − 1) ×… × (𝑎 − 𝑏 + 1)
if 𝑎 ≥ 𝑏 − 1 and 0 otherwise.

By considering the second derivative, one can check that for any fixed 𝑘 and 𝑛, ℎ𝑘(𝑛, 𝑥) as a
function of 𝑥 is convex on [1, ⌊(𝑛 − 1)∕2⌋], hence it attains its maximum at one of the endpoints,
𝑥 = 1 or 𝑥 = ⌊(𝑛 − 1)∕2⌋. When 𝑘 = 2, ℎ2(𝑛, 𝑥) = ℎ(𝑛, 𝑥). We prove the following generalization of
Theorem 2.

Theorem 6. Let 𝑛, 𝑑, 𝑘 be integers with 1 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋ and 𝑘 ≥ 2. If 𝐺 is a nonhamiltonian graph on

𝑛 vertices with minimum degree 𝛿(𝐺) ≥ 𝑑, then the number 𝑁𝑘(𝐺) of 𝑘-cliques in 𝐺 satisfies

𝑁𝑘(𝐺) ≤ max
{
ℎ𝑘(𝑛, 𝑑), ℎ𝑘

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
.

Again, graphs 𝐻𝑛,𝑑 and 𝐻𝑛,⌊(𝑛−1)∕2⌋ are sharpness examples for the theorem.
Finally, we present a stability version of Theorem 6. To state the result, we first define the family of

extremal graphs.
Fix 𝑑 ≤ ⌊(𝑛 − 1)∕2⌋. In addition to graphs 𝐻𝑛,𝑑 and 𝐾 ′

𝑛,𝑑
defined above, define 𝐻 ′

𝑛,𝑑
: 𝑉 (𝐻 ′

𝑛,𝑑
) =

𝐴 ∪ 𝐵, where 𝐴 induces a complete graph on 𝑛 − 𝑑 − 1 vertices, 𝐵 is a set of 𝑑 + 1 vertices that
induce exactly one edge, and there exists a set of vertices {𝑎1,… , 𝑎𝑑} ⊆ 𝐴 such that for all 𝑏 ∈ 𝐵,
𝑁(𝑏) − 𝐵 = {𝑎1,… , 𝑎𝑑}. Note that contracting the edge in 𝐻 ′

𝑛,𝑑
[𝐵] yields 𝐻𝑛−1,𝑑 . These graphs are

illustrated in Fig. 2.
We also have two more extremal graphs for the cases 𝑑 = 2 or 𝑑 = 3. Define the nonhamiltonian

𝑛-vertex graph 𝐺′
𝑛,2 with minimum degree 2 as follows: 𝑉 (𝐺′

𝑛,2) = 𝐴 ∪ 𝐵 where 𝐴 induces a clique or
order 𝑛 − 3, 𝐵 = {𝑏1, 𝑏2, 𝑏3} is an independent set of order 3, and there exists {𝑎1, 𝑎2, 𝑎3, 𝑥} ⊆ 𝐴 such
that 𝑁(𝑏𝑖) = {𝑎𝑖, 𝑥} for 𝑖 ∈ {1, 2, 3} (see the graph on the left in Fig. 3).

The nonhamiltonian 𝑛-vertex graph 𝐹𝑛,3 with minimum degree 3 has vertex set 𝐴 ∪ 𝐵, where 𝐴

induces a clique of order 𝑛 − 4, 𝐵 induces a perfect matching on four vertices, and each of the vertices
in 𝐵 is adjacent to the same two vertices in 𝐴 (see the graph on the right in Fig. 3).

Our stability result is the following:

Theorem 7. Let 𝑛 ≥ 3 and 1 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋. Suppose that 𝐺 is an 𝑛-vertex nonhamiltonian graph with

minimum degree 𝛿(𝐺) ≥ 𝑑 such that there exists 𝑘 ≥ 2 for which

𝑁𝑘(𝐺) > max
{
ℎ𝑘(𝑛, 𝑑 + 2), ℎ𝑘

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
. (3)

 10970118, 2018, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22246 by U

niversity O
f Illinois A

t, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



180 FÜREDI ET AL.

F I G U R E 3 Graphs 𝐺′
𝑛,2 (left) and 𝐹𝑛,3 (right)

d d d d d + 1

F I G U R E 4 Graphs 𝐻𝑛,𝑑 , 𝐾
′
𝑛,𝑑

,𝐻 ′
𝑛,𝑑

, 𝐺′
𝑛,2, and 𝐹𝑛,3

Let 𝑛,𝑑 ∶= {𝐻𝑛,𝑑,𝐻𝑛,𝑑+1, 𝐾
′
𝑛,𝑑

, 𝐾 ′
𝑛,𝑑+1,𝐻

′
𝑛,𝑑

}.

(i) If 𝑑 = 2, then 𝐺 is a subgraph of 𝐺′
𝑛,2 or of a graph in 𝑛,2;

(ii) if 𝑑 = 3, then 𝐺 is a subgraph of 𝐹𝑛,3 or of a graph in 𝑛,3;

(iii) if 𝑑 = 1 or 4 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋, then 𝐺 is a subgraph of a graph in 𝑛,𝑑 .

The result is sharp because 𝐻𝑛,𝑑+2 has ℎ𝑘(𝑛, 𝑑 + 2) copies of 𝐾𝑘, minimum degree 𝑑 + 2 > 𝑑, is
nonhamiltonian and is not contained in any graph in 𝑛,𝑑 ∪ {𝐺′

𝑛,2, 𝐹𝑛,3}.
The outline for the rest of the article is as follows: in Section 3 we present some structural results

for graphs that are edge-maximal nonhamiltonian to be used in the proofs of the main theorems, in
Section 4 we prove Theorem 4, in Section 5 we prove Theorem 6 and give a cliques version of Theorem
3, and in Section 6 we prove Theorem 7 (See Fig. 4).

3 STRUCTURAL RESULTS FOR SATURATED GRAPHS

We will use a classical theorem of Pósa (usually stated as its contrapositive).

Theorem 8 (Pósa [13]). Let 𝑛 ≥ 3. If 𝐺 is a nonhamiltonian 𝑛-vertex graph, then there exists 1 ≤ 𝑟 ≤⌊ 𝑛−1
2 ⌋ such that 𝐺 has a set of 𝑟 vertices with degree at most 𝑟.

Call a graph 𝐺 saturated if 𝐺 is nonhamiltonian but for each 𝑢𝑣 ∉ 𝐸(𝐺), 𝐺 + 𝑢𝑣 has a hamiltonian
cycle. Ore's proof [12] of Dirac's Theorem [3] yields that

𝑑(𝑢) + 𝑑(𝑣) ≤ 𝑛 − 1 (4)

for every 𝑛-vertex saturated graph 𝐺 and for each 𝑢𝑣 ∉ 𝐸(𝐺).
We will also need two structural results for saturated graphs that are easy extensions of Lemmas 6

and 7 in [6].
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FÜREDI ET AL. 181

Lemma 9. Let 𝐺 be a saturated 𝑛-vertex graph with 𝑁𝑘(𝐺) > ℎ𝑘(𝑛, ⌊ 𝑛−1
2 ⌋) for some 𝑘 ≥ 2. Then for

some 1 ≤ 𝑟 ≤ ⌊ 𝑛−1
2 ⌋, 𝑉 (𝐺) contains a subset 𝐷 of 𝑟 vertices of degree at most 𝑟 such that 𝐺 −𝐷 is a

complete graph.

Proof. Since 𝐺 is nonhamiltonian, by Theorem 8, there exists some 1 ≤ 𝑟 ≤ ⌊ 𝑛−1
2 ⌋ such that 𝐺 has

𝑟 vertices with degree at most 𝑟. Pick the maximum such 𝑟, and let 𝐷 be the set of the vertices with
degree at most 𝑟. Since 𝑁𝑘(𝐺) > ℎ𝑘(𝑛, ⌊ 𝑛−1

2 ⌋), 𝑟 < ⌊ 𝑛−1
2 ⌋. So, by the maximality of 𝑟, |𝐷| = 𝑟.

Suppose there exist 𝑥, 𝑦 ∈ 𝑉 (𝐺) −𝐷 such that 𝑥𝑦 ∉ 𝐸(𝐺). Among all such pairs, choose 𝑥 and 𝑦

with the maximum 𝑑(𝑥) and subject to this, the maximum 𝑑(𝑦). Let 𝐷′ ∶= 𝑉 (𝐺) −𝑁(𝑥) − {𝑥}. Con-
sider any vertex 𝑧 ∈ 𝐷′. If 𝑧 ∈ 𝐷, then 𝑑(𝑧) ≤ 𝑟 < 𝑑(𝑦). If 𝑧 ∉ 𝐷, then 𝑑(𝑧) ≤ 𝑑(𝑦) by the choice
of 𝑦. So 𝐷′ is a set of 𝑛 − 1 − 𝑑(𝑥) vertices of degree at most 𝑑(𝑦). By (4), |𝐷′| ≥ 𝑑(𝑦). By the
maximality of 𝑟, we have 𝑑(𝑦) > ⌊(𝑛 − 1)∕2⌋. Since 𝑑(𝑥) ≥ 𝑑(𝑦), we get 𝑑(𝑥) + 𝑑(𝑦) ≥ 2𝑑(𝑦) ≥ 𝑛,
contradicting (4). ■

Also, repeating the proof of Lemma 15 in [6] gives the following lemma.

Lemma 10 (Lemma 15 in [6]). Under the conditions of Lemma 9, if 𝑟 = 𝛿(𝐺), then 𝐺 = 𝐻𝑛,𝛿(𝐺) or
𝐺 = 𝐾 ′

𝑛,𝛿(𝐺).

4 MAXIMIZING THE NUMBER OF COPIES OF A GIVEN
GRAPH AND A PROOF OF THEOREM 4

In order to prove Theorem 4, we first show that for any fixed graph 𝐹 and any 𝑑, if 𝑛 is large then of
the two extremal graphs in Lemma 10, 𝐻𝑛,𝑑 contains at least as many copies of 𝐹 as 𝐾 ′

𝑛,𝑑
.

Lemma 11. For any 𝑑, 𝑡, 𝑛 ∈ ℕ with 𝑛 ≥ 2𝑑𝑡 + 𝑑 + 𝑡 and any graph 𝐹 with 𝑡 = |𝑉 (𝐹 )| we have
𝑁(𝐾 ′

𝑛,𝑑
, 𝐹 ) ≤ 𝑁(𝐻𝑛,𝑑, 𝐹 ).

Proof. Fix 𝐹 and 𝑡 = |𝑉 (𝐹 )|. Let 𝐾 ′
𝑛,𝑑

= 𝐴 ∪ 𝐵 where 𝐴 and 𝐵 are cliques of order 𝑛 − 𝑑 and 𝑑 + 1
respectively and 𝐴 ∩ 𝐵 = {𝑣∗}, the cut vertex of 𝐾 ′

𝑛,𝑑
. Also, let 𝐷 denote the independent set of order

𝑑 in 𝐻𝑛,𝑑 . We may assume 𝑑 ≥ 2, because 𝐻𝑛,1 = 𝐾 ′
𝑛,1. If 𝑥 is an isolated vertex of 𝐹 then for any 𝑛-

vertex graph 𝐺 we have 𝑁(𝐺,𝐹 ) = (𝑛 − 𝑡 + 1)𝑁(𝐺,𝐹 − 𝑥). So it is enough to prove the case 𝛿(𝐹 ) ≥ 1,
and we may also assume 𝑡 ≥ 3.

Because both 𝐾 ′
𝑛,𝑑

[𝐴] and 𝐻𝑛,𝑑 −𝐷 are cliques of order 𝑛 − 𝑑, the number of embeddings of 𝐹 into
𝐾 ′

𝑛,𝑑
[𝐴] is the same as the number of embeddings of 𝐹 into 𝐻𝑛,𝑑 −𝐷. So it remains to compare only

the number of embeddings in Φ ∶= {𝜑 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐾 ′
𝑛,𝑑

) such that 𝜑(𝐹 ) intersects 𝐵 − 𝑣∗} to the
number of embeddings in Ψ ∶= {𝜓 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐻𝑛,𝑑) such that 𝜓(𝐹 ) intersects 𝐷}.

Let 𝐶 ∪ 𝐶 be a partition of the vertex set 𝑉 (𝐹 ), 𝑠 ∶= |𝐶|. Define the following classes of Φ
and Ψ

– Φ(𝐶) ∶= {𝜑 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐾 ′
𝑛,𝑑

) such that 𝜑(𝐶) intersects 𝐵 − 𝑣∗, 𝜑(𝐶) ⊆ 𝐵, and 𝜑(𝐶) ⊆ 𝑉 − 𝐵},

– Ψ(𝐶) ∶= {𝜓 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐻𝑛,𝑑) such that 𝜓(𝐶) intersects 𝐷, 𝜓(𝐶) ⊆ (𝐷 ∪𝑁(𝐷)), and 𝜓(𝐶) ⊆
𝑉 − (𝐷 ∪𝑁(𝐷))}.

By these definitions, if 𝐶 ≠ 𝐶 ′ then Φ(𝐶) ∩ Φ(𝐶 ′) = ∅, and Ψ(𝐶) ∩ Ψ(𝐶 ′) = ∅. Also⋃
∅≠𝐶⊆𝑉 (𝐹 ) Φ(𝐶) = Φ. We claim that for every 𝐶 ≠ ∅,

|Φ(𝐶)| ≤ |Ψ(𝐶)|. (5)
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182 FÜREDI ET AL.

Summing up the number of embeddings over all choices for 𝐶 will prove the lemma. If Φ(𝐶) = ∅,
then (5) obviously holds. So from now on, we consider the cases when Φ(𝐶) is not empty, implying
1 ≤ 𝑠 ≤ 𝑑 + 1.

Case 1: There is an 𝐹 -edge joining 𝐶 and 𝐶 . So there is a vertex 𝑣 ∈ 𝐶 with 𝑁𝐹 (𝑣) ∩ 𝐶 ≠ ∅. Then
for every mapping 𝜑 ∈ Φ(𝐶), the vertex 𝑣 must be mapped to 𝑣∗ in 𝐾 ′

𝑛,𝑑
, 𝜑(𝑣) = 𝑣∗. So this

vertex 𝑣 is uniquely determined by 𝐶 . Also, 𝜑(𝐶) ∩ (𝐵 − 𝑣∗) ≠ ∅ implies 𝑠 ≥ 2. The rest of 𝐶
can be mapped arbitrarily to 𝐵 − 𝑣∗ and 𝐶 can be mapped arbitrarily to 𝐴 − 𝑣∗. We obtained
that |Φ(𝐶)| = (𝑑)𝑠−1(𝑛 − 𝑑 − 1)𝑡−𝑠.

To obtain a lower bound for |Ψ(𝐶)|, we construct mappings 𝜓 ∈ Ψ(𝐶) as follows. Let 𝜓(𝑣) = 𝑥 ∈
𝑁(𝐷) (there are 𝑑 possibilities), then map some vertex of 𝐶 − 𝑣 to a vertex 𝑦 ∈ 𝐷 (there are (𝑠 − 1)𝑑
possibilities). Since 𝑁 + 𝑦 forms a clique of order 𝑑 + 1 we may embed the rest of 𝐶 into 𝑁 − 𝑣 in
(𝑑 − 1)𝑠−2 ways and finish embedding of 𝐹 into 𝐻𝑛,𝑑 by arbitrarily placing the vertices of 𝐶 to 𝑉 −
(𝐷 ∪𝑁(𝐷)). We obtained that |Ψ(𝐶)| ≥ 𝑑2(𝑠 − 1)(𝑑 − 1)𝑠−2(𝑛 − 2𝑑)𝑡−𝑠 = 𝑑(𝑠 − 1)(𝑑)𝑠−1(𝑛 − 2𝑑)𝑡−𝑠.

Since 𝑠 ≥ 2 we have that

|Ψ(𝐶)||Φ(𝐶)| ≥ 𝑑(𝑠 − 1)(𝑑)𝑠−1(𝑛 − 2𝑑)𝑡−𝑠

(𝑑)𝑠−1(𝑛 − 𝑑 − 1)𝑡−𝑠

≥ 𝑑(2 − 1)
(
𝑛 − 2𝑑 + 1 − 𝑡 + 𝑠

𝑛 − 𝑑 − 𝑡 + 𝑠

)𝑡−𝑠

= 𝑑

(
1 − 𝑑 − 1

𝑛 − 𝑑 − 𝑡 + 𝑠

)𝑡−𝑠

≥ 𝑑

(
1 − (𝑑 − 1)(𝑡 − 𝑠)

𝑛 − 𝑑 − 𝑡 + 𝑠

)

≥ 𝑑

(
1 − (𝑑 − 1)𝑡

𝑛 − 𝑑 − 𝑡

)
> 1 when 𝑛 > 𝑑𝑡 + 𝑑 + 𝑡.

Case 2: 𝐶 and 𝐶 are not connected in 𝐹 . We may assume 𝑠 ≥ 2 since 𝐶 is a union of components with
𝛿(𝐹 ) ≥ 1. In 𝐾 ′

𝑛,𝑑
there are at exactly (𝑑 + 1)𝑠(𝑛 − 𝑑 − 1)𝑡−𝑠 ways to embed 𝐹 into 𝐵 so that

only 𝐶 is mapped into 𝐵 and 𝐶 goes to 𝐴 − 𝑣∗, i.e. |Φ(𝐶)| = (𝑑 + 1)𝑠(𝑛 − 𝑑 − 1)𝑡−𝑠.

To obtain a lower bound for |Ψ(𝐶)|, we construct mappings 𝜓 ∈ Ψ(𝐶) as follows. Select any vertex
𝑣 ∈ 𝐶 and map it to some vertex in 𝐷 (there are 𝑠𝑑 possibilities), then map 𝐶 − 𝑣 into 𝑁(𝐷) (there
are (𝑑)𝑠−1 possibilities) and finish embedding of 𝐹 into 𝐻𝑛,𝑑 by arbitrarily placing the vertices of 𝐶 to
𝑉 − (𝐷 ∪𝑁(𝐷)). We obtained that |Ψ(𝐶)| ≥ 𝑑𝑠(𝑑)𝑠−1(𝑛 − 2𝑑)𝑡−𝑠. We have

|Ψ(𝐶)||Φ(𝐶)| ≥ 𝑑𝑠(𝑑)𝑠−1(𝑛 − 2𝑑)𝑡−𝑠

(𝑑 + 1)𝑠(𝑛 − 𝑑 − 1)𝑡−𝑠

≥
𝑑𝑠

𝑑 + 1

(
1 − (𝑑 − 1)𝑡

𝑛 − 𝑑 − 𝑡

)

≥
2𝑑

𝑑 + 1

(
1 − (𝑑 − 1)𝑡

𝑛 − 𝑑 − 𝑡

)
because 𝑠 ≥ 2

> 1 when 𝑛 > 2𝑑𝑡 + 𝑑 + 𝑡.

■

We are now ready to prove Theorem 4.
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FÜREDI ET AL. 183

Theorem 4. For every graph 𝐹 with 𝑡 ∶= |𝑉 (𝐹 )| ≥ 3, any 𝑑 ∈ ℕ, and any 𝑛 ≥ 𝑛0(𝑑, 𝑡) ∶= 4𝑑𝑡 +
3𝑑2 + 5𝑡, if 𝐺 is an 𝑛-vertex nonhamiltonian graph with minimum degree 𝛿(𝐺) ≥ 𝑑, then 𝑁(𝐺,𝐹 ) ≤
𝑁(𝐻𝑛,𝑑, 𝐹 ).

Proof. Let 𝑑 ≥ 1. Fix a graph 𝐹 with |𝑉 (𝐹 )| ≥ 3 (if |𝑉 (𝐹 )| = 2, then either 𝐹 = 𝐾2 or 𝐹 = 𝐾2).
The case where 𝐺 has isolated vertices can be handled by induction on the number of isolated vertices,
hence we may assume each vertex has degree at least 1. Set

𝑛0 = 4𝑑𝑡 + 3𝑑2 + 5𝑡. (6)

Fix a nonhamiltonian graph 𝐺 with |𝑉 (𝐺)| = 𝑛 ≥ 𝑛0 and 𝛿(𝐺) ≥ 𝑑 such that 𝑁(𝐺,𝐹 ) >
𝑁(𝐻𝑛,𝑑, 𝐹 ) ≥ (𝑛 − 𝑑)𝑡. We may assume that 𝐺 is saturated, as the number of copies of 𝐹 can only
increase when we add edges to 𝐺.

Because 𝑛 ≥ 4𝑑𝑡 + 𝑡 by (6),

(𝑛 − 𝑑)𝑡
(𝑛)𝑡

≥

(
𝑛 − 𝑑 − 𝑡

𝑛 − 𝑡

)𝑡

=
(
1 − 𝑑

𝑛 − 𝑡

)𝑡

≥ 1 − 𝑑𝑡

𝑛 − 𝑡
≥ 1 − 1

4
= 3

4
.

So, (𝑛 − 𝑑)𝑡 ≥
3
4 (𝑛)𝑡.

By mapping edge 𝑥𝑦 of 𝐹 to an edge of 𝐺 in two labeled ways, we get that 𝑁(𝐺,𝐹 ) satisfies

2𝑒(𝐺)(𝑛 − 2)𝑡−2 ≥ 𝑁(𝐺,𝐹 ) ≥ (𝑛 − 𝑑)𝑡 ≥
3
4
(𝑛)𝑡,

This yields the loose upper bound

𝑒(𝐺) ≥ 3
4

(
𝑛

2

)
> ℎ2(𝑛, ⌊(𝑛 − 1)∕2⌋). (7)

By Pósa's theorem (Theorem 8), there exists some 𝑑 ≤ 𝑟 ≤ ⌊(𝑛 − 1)∕2⌋ such that 𝐺 contains a set
𝑅 of 𝑟 vertices with degree at most 𝑟. Furthermore by (7), 𝑟 < 𝑑0. So by integrality, 𝑟 ≤ 𝑑0 − 1 ≤

(𝑛 + 3)∕6. If 𝑟 = 𝑑, then by Lemma 10, either 𝐺 = 𝐻𝑛,𝑑 or 𝐺 = 𝐾 ′
𝑛,𝑑

. By Lemma 11 and (6), 𝐺 = 𝐻𝑛,𝑑 ,
a contradiction. So we have 𝑟 ≥ 𝑑 + 1.

Let  denote the family of all nonempty independent sets in 𝐹 . For 𝐼 ∈ , let 𝑖 = 𝑖(𝐼) ∶= |𝐼| and 𝑗 =
𝑗(𝐼) ∶= |𝑁𝐹 (𝐼)|. Since 𝐹 has no isolated vertices, 𝑗(𝐼) ≥ 1 and so 𝑖 ≤ 𝑡 − 1 for each 𝐼 ∈ . Let Φ(𝐼)
denote the set of embeddings 𝜑 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐺) such that 𝜙(𝐼) ⊆ 𝑅 and 𝐼 is a maximum independent
subset of 𝜙−1(𝑅 ∩ 𝜑(𝐹 )). Note that 𝜑(𝐼) is not necessarily independent in 𝐺. We show that

|Φ(𝐼)| ≤ (𝑟)𝑖𝑟(𝑛 − 𝑟)𝑡−𝑖−1. (8)

Indeed, there are (𝑟)𝑖 ways to choose 𝜙(𝐼) ⊆ 𝑅. After that, since each vertex in 𝑅 has at most 𝑟 neighbors
in 𝐺, there are at most 𝑟𝑗 ways to embed 𝑁𝐹 (𝐼) into 𝐺. By the maximality of 𝐼 , all vertices of 𝐹 −
𝐼 −𝑁𝐹 (𝐼) should be mapped to 𝑉 (𝐺) − 𝑅. There are at most (𝑛 − 𝑟)𝑡−𝑖−𝑗 to do it. Hence |Φ(𝐼)| ≤
(𝑟)𝑖𝑟𝑗(𝑛 − 𝑟)𝑡−𝑖−𝑗 . Since 2𝑟 + 𝑡 ≤ 2(𝑑0 − 1) + 𝑡 < 𝑛, this implies (8).
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184 FÜREDI ET AL.

Since each 𝜑 ∶ 𝑉 (𝐹 ) → 𝑉 (𝐺) with 𝜑(𝑉 (𝐹 )) ∩𝑅 ≠ ∅ belongs to Φ(𝐼) for some nonempty 𝐼 ∈ ,
(8) implies

𝑁(𝐺, 𝐹 ) ≤ (𝑛 − 𝑟)𝑡 +
∑

∅≠𝐼∈
|Φ(𝐼)| ≤ (𝑛 − 𝑟)𝑡 +

𝑡−1∑
𝑖=1

(
𝑡

𝑖

)
(𝑟)𝑖𝑟(𝑛 − 𝑟)𝑡−𝑖−1. (9)

Hence

𝑁(𝐺, 𝐹 )
𝑁(𝐻𝑛,𝑑, 𝐹 )

≤
(𝑛 − 𝑟)𝑡 +

∑𝑡−1
𝑖=1

(𝑡
𝑖

)
(𝑟)𝑖𝑟(𝑛 − 𝑟)𝑡−𝑖−1

(𝑛 − 𝑑)𝑡

≤
(𝑛 − 𝑟)𝑡
(𝑛 − 𝑑)𝑡

+ 1
(𝑛 − 𝑑)𝑡

× 𝑟

𝑛 − 𝑟 − 𝑡 + 2

𝑡−1∑
𝑖=1

(
𝑡

𝑖

)
(𝑟)𝑖(𝑛 − 𝑟)𝑡−𝑖

=
(𝑛 − 𝑟)𝑡
(𝑛 − 𝑑)𝑡

+
(𝑛)𝑡 − (𝑛 − 𝑟)𝑡 − (𝑟)𝑡

(𝑛 − 𝑑)𝑡
× 𝑟

𝑛 − 𝑟 − 𝑡 + 2

≤
(𝑛 − 𝑟)𝑡
(𝑛 − 𝑑)𝑡

× 𝑛 − 𝑡 + 2 − 2𝑟
𝑛 − 𝑡 + 2 − 𝑟

+
(𝑛)𝑡

(𝑛 − 𝑑)𝑡
× 𝑟

𝑛 − 𝑡 + 2 − 𝑟
∶= 𝑓 (𝑟).

Given fixed 𝑛, 𝑑, 𝑡, we claim that the real function 𝑓 (𝑟) is convex for 0 < 𝑟 < (𝑛 − 𝑡 + 2)∕2.
Indeed, the first term 𝑔(𝑟) ∶= (𝑛−𝑟)𝑡

(𝑛−𝑑)𝑡
× 𝑛−𝑡+2−2𝑟

𝑛−𝑡+2−𝑟
is a product of 𝑡 linear terms in each of which 𝑟 has

a negative coefficient (note that the 𝑛 − 𝑡 + 2 − 𝑟 term cancels out with a factor of 𝑛 − 𝑟 − 𝑡 + 2 in (𝑛 −
𝑟)𝑡). Applying product rule, the first derivative 𝑔′ is a sum of 𝑡 products, each with 𝑡 − 1 linear terms.
For 𝑟 < (𝑛 − 𝑡 + 2)∕2, each of these products is negative, thus 𝑔′(𝑟) < 0. Finally, applying product rule
again, 𝑔′′ is the sum of 𝑡(𝑡 − 1) products. For 𝑟 < (𝑛 − 𝑡 + 2)∕2 each of the products is positive, thus
𝑔′′(𝑟) > 0.

Similarly, the second factor of the second term (as a real function of 𝑟, of the form 𝑟∕(𝑐 − 𝑟)) is
convex for 𝑟 < 𝑛 − 𝑡 + 2.

We conclude that in the interval [𝑑 + 1, (𝑛 + 3)∕6] the function 𝑓 (𝑟) takes its maximum either at
one of the endpoints 𝑟 = 𝑑 + 1 or 𝑟 = (𝑛 + 3)∕6. We claim that 𝑓 (𝑟) < 1 at both end points.

In case of 𝑟 = 𝑑 + 1 the first factor of the first term equals (𝑛 − 𝑑 − 𝑡)∕(𝑛 − 𝑑). To get an upper
bound for the first factor of the second term one can use the inequality

∏
(1 + 𝑥𝑖) < 1 + 2

∑
𝑥𝑖 that

holds for any number of nonnegative 𝑥𝑖's if 0 <
∑

𝑥𝑖 ≤ 1. Because 𝑑𝑡∕(𝑛 − 𝑑 − 𝑡 + 1) ≤ 1 by (6), we
obtain that

𝑓 (𝑑 + 1) < 𝑛 − 𝑑 − 𝑡

𝑛 − 𝑑
× 𝑛 − 𝑡 − 2𝑑

𝑛 − 𝑡 − 𝑑 + 1
+
(
1 + 2𝑑𝑡

𝑛 − 𝑑 − 𝑡 + 1

)
× 𝑑 + 1

𝑛 − 𝑡 − 𝑑 + 1

=
(
1 − 𝑡

𝑛 − 𝑑

)
×
(
1 − 𝑑 + 1

𝑛 − 𝑡 − 𝑑 + 1

)
+
(

𝑑 + 1
𝑛 − 𝑡 − 𝑑 + 1

)
+
(

2𝑑𝑡(𝑑 + 1)
(𝑛 − 𝑡 − 𝑑 + 1)2

)

= 1 − 𝑡

𝑛 − 𝑑
+ 𝑡

𝑛 − 𝑑
× 𝑑 + 1

𝑛 − 𝑡 − 𝑑 + 1
+ 𝑡

𝑛 − 𝑑
× 2𝑑(𝑑 + 1)

𝑛 − 𝑡 − 𝑑 + 1
× 𝑛 − 𝑑

𝑛 − 𝑡 − 𝑑 + 1

= 1 − 𝑡

𝑛 − 𝑑
×
(
1 − 𝑑 + 1

𝑛 − 𝑡 − 𝑑 + 1
− 2𝑑(𝑑 + 1)

𝑛 − 𝑡 − 𝑑 + 1
×
(
1 + 𝑡 − 1

𝑛 − 𝑡 − 𝑑 + 1

))

< 1 − 𝑡

𝑛 − 𝑑
×
(
1 − 1

4𝑡
− 2

3

(
1 + 1

4𝑑

))
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FÜREDI ET AL. 185

≤ 1 − 𝑡

𝑛 − 𝑑
× (1 − 1∕12 − 2∕3 × 5∕4)

< 1.

Here, we used that 𝑛 ≥ 3𝑑2 + 2𝑑 + 𝑡 and 𝑛 ≥ 4𝑑𝑡 + 5𝑡 + 𝑑 by (6), 𝑡 ≥ 3, and 𝑑 ≥ 1.
To bound 𝑓 (𝑟) for other values of 𝑟, let us use 1 + 𝑥 ≤ 𝑒𝑥 (true for all 𝑥). We get

𝑓 (𝑟) < exp
{
− (𝑟 − 𝑑)𝑡
𝑛 − 𝑑 − 𝑡 + 1

}
+ 𝑟

𝑛 − 𝑟 − 𝑡 + 2
× exp

{
𝑑𝑡

𝑛 − 𝑑 − 𝑡 + 1

}
.

When 𝑟 = (𝑛 + 3)∕6, 𝑡 ≥ 3, and 𝑛 ≥ 24𝑑 by (6), the first term is at most 𝑒−18∕46 = 0.676…. Moreover,
for 𝑛 ≥ 9𝑡 (6) (therefore 𝑛 ≥ 27) we get that 𝑟

𝑛−𝑟−𝑡+2 is maximized when 𝑡 is maximized, i.e. when

𝑡 = 𝑛∕9. The whole term is at most (3𝑛 + 9)∕(13𝑛 + 27) × 𝑒1∕4 ≤ 5∕21 × 𝑒1∕4 = 0.305…, so in this
range, 𝑓 ((𝑛 + 3)∕6) < 1.

By the convexity of 𝑓 (𝑟), we have 𝑁(𝐺,𝐹 ) < 𝑁(𝐻𝑛,𝑑, 𝐹 ). ■

When 𝐹 is a star, then it is easy to determine max𝑁(𝐺,𝐹 ) for all 𝑛.

Claim 12. Suppose 𝐹 = 𝐾1,𝑡−1 with 𝑡 ∶= |𝑉 (𝐹 )| ≥ 3, and 𝑡 ≤ 𝑛 and 𝑑 are integers with 1 ≤ 𝑑 ≤⌊(𝑛 − 1)∕2⌋. If 𝐺 is an 𝑛-vertex nonhamiltonian graph with minimum degree 𝛿(𝐺) ≥ 𝑑, then

𝑁(𝐺,𝐹 ) ≤ max
{
𝑁(𝐻𝑛,𝑑, 𝐹 ), 𝑁(𝐻𝑛,⌊(𝑛−1)∕2⌋, 𝐹 )

}
, (10)

and equality holds if and only if 𝐺 ∈ {𝐻𝑛,𝑑,𝐻𝑛,⌊(𝑛−1)∕2⌋}.

Proof. The number of copies of stars in a graph 𝐺 depends only on the degree sequence of the graph:
if a vertex 𝑣 of a graph 𝐺 has degree 𝑑(𝑣), then there are (𝑑(𝑣))𝑡−1 labeled copies of 𝐹 in 𝐺 where 𝑣 is
the center vertex. We have

𝑁(𝐺,𝐹 ) =
∑

𝑣∈𝑉 (𝐺)

(
𝑑(𝑣)
𝑡 − 1

)
. (11)

Since 𝐺 is nonhamiltonian, Pósa's theorem yields an 𝑟 ≤ ⌊(𝑛 − 1)∕2⌋, and an 𝑟-set 𝑅 ⊂ 𝑉 (𝐺) such that
𝑑𝐺(𝑣) ≤ 𝑟 for all 𝑣 ∈ 𝑅. Take the minimum such 𝑟, then there exists a vertex 𝑣 ∈ 𝑅 with deg(𝑣) = 𝑟.
We may also suppose that 𝐺 is edge-maximal nonhamiltonian, so Ore's condition (4) holds. It implies
that deg(𝑤) ≤ 𝑛 − 𝑟 − 1 for all 𝑤 ∉ 𝑁(𝑣). Altogether we obtain that 𝐺 has 𝑟 vertices of degree at most
𝑟, at least 𝑛 − 2𝑟 vertices (those in 𝑉 (𝐺) −𝑅 −𝑁(𝑣)) of degree at most (𝑛 − 𝑟 − 1). This implies that
the right hand side of (11) is at most

𝑟 × (𝑟)𝑡−1 + (𝑛 − 2𝑟) × (𝑛 − 𝑟 − 1)𝑡−1 + 𝑟 × (𝑛 − 1)𝑡−1 = 𝑁(𝐻𝑛,𝑟, 𝐹 ).

(Here equality holds only if 𝐺 = 𝐻𝑛,𝑟). Note that 𝑟 ∈ [𝑑, ⌊ 12 (𝑛 − 1)⌋]. Since for given 𝑛 and 𝑡 the
function 𝑁(𝐻𝑛,𝑟, 𝐹 ) is strictly convex in 𝑟, it takes its maximum at one of the endpoints of the
interval. ■

Remark 13. As it was mentioned in Section 2, 𝑂(𝑑𝑡) is the right order for 𝑛0(𝑑, 𝑡) when 𝑑 = 𝑂(𝑡).

To see this, fix 𝑑 ∈ ℕ and let 𝐹 be the star on 𝑡 ≥ 3 vertices. If 𝑑 < ⌊(𝑛 − 1)∕2⌋, 𝑡 ≤ 𝑛 and 𝑛 ≤

𝑑𝑡 − 𝑑, then 𝐻𝑛,⌊(𝑛−1)∕2⌋ contains more copies of 𝐹 than 𝐻𝑛,𝑑 does, the maximum in (10) is reached
for 𝑟 = ⌊(𝑛 − 1)∕2⌋. We present the calculation below only for 2𝑑 + 7 ≤ 𝑛 ≤ 𝑑𝑡 − 𝑑, the case 2𝑑 + 3 ≤

𝑛 ≤ 2𝑑 + 6 can be checked by hand by plugging 𝑛 into the first line of the formula below. We can
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186 FÜREDI ET AL.

proceed as follows.

𝑁(𝐻𝑛,⌊(𝑛−1)∕2⌋, 𝐹 ) −𝑁(𝐻𝑛,𝑑, 𝐹 ) = (⌊(𝑛 − 1)∕2⌋(𝑛 − 1)𝑡−1 + ⌈(𝑛 + 1)∕2⌉(⌊(𝑛 − 1)∕2⌋)𝑡−1)
−(𝑑(𝑛 − 1)𝑡−1 + (𝑛 − 2𝑑)(𝑛 − 𝑑 − 1)𝑡−1 + 𝑑(𝑑)𝑡−1)

= (⌊(𝑛 − 1)∕2⌋ − 𝑑)(𝑛 − 1)𝑡−1 − (𝑛 − 2𝑑)(𝑛 − 𝑑 − 1)𝑡−1

+⌈(𝑛 + 1)∕2⌉(⌊(𝑛 − 1)∕2⌋)𝑡−1 − 𝑑(𝑑)𝑡−1

> (⌊(𝑛 − 1)∕2⌋ − 𝑑)(𝑛 − 1)𝑡−1 − ((𝑛 − 2𝑑)(1 − 𝑑∕𝑛)𝑡−1)(𝑛 − 1)𝑡−1

> (𝑛 − 1)𝑡−1(⌊(𝑛 − 1)∕2⌋ − 𝑑 − (𝑛 − 2𝑑)𝑒−(𝑑𝑡−𝑑)∕𝑛)

≥ (𝑛 − 1)𝑡−1(⌊(𝑛 − 1)∕2⌋ − 𝑑 − (𝑛 − 2𝑑)∕𝑒)

≥ 0.

5 THEOREM 6 AND A STABILITY VERSION OF IT

In general, it is difficult to calculate the exact value of 𝑁(𝐻𝑛,𝑑, 𝐹 ) for a fixed graph 𝐹 . However, when
𝐹 = 𝐾𝑘, we have 𝑁(𝐻𝑛,𝑑, 𝐾𝑘) = ℎ𝑘(𝑛, 𝑑)𝑘!. Recall Theorem 6:

Let 𝑛, 𝑑, 𝑘 be integers with 1 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋ and 𝑘 ≥ 2. If 𝐺 is a nonhamiltonian graph on 𝑛 vertices

with minimum degree 𝛿(𝐺) ≥ 𝑑, then

𝑁𝑘(𝐺) ≤ max
{
ℎ𝑘(𝑛, 𝑑), ℎ𝑘

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
.

Proof of Theorem 6. By Theorem 8, because 𝐺 is nonhamiltonian, there exists an 𝑟 ≥ 𝑑 such that 𝐺 has
𝑟 vertices of degree at most 𝑟. Denote this set of vertices by 𝐷. Then 𝑁𝑘(𝐺 −𝐷) ≤

(𝑛−𝑟

𝑘

)
, and every

vertex in 𝐷 is contained in at most
( 𝑟

𝑘−1

)
copies of 𝐾𝑘. Hence 𝑁𝑘(𝐺) ≤ ℎ𝑘(𝑛, 𝑟). The theorem follows

from the convexity of ℎ𝑘(𝑛, 𝑥). ■

Our older stability theorem (Theorem 3) also translates into the the language of cliques, giving a
stability theorem for Theorem 6:

Theorem 14. Let 𝑛 ≥ 3, and 𝑑 ≤ ⌊ 𝑛−1
2 ⌋. Suppose that 𝐺 is an 𝑛-vertex nonhamiltonian graph with

minimum degree 𝛿(𝐺) ≥ 𝑑 and there exists a 𝑘 ≥ 2 such that

𝑁𝑘(𝐺) > max
{
ℎ𝑘(𝑛, 𝑑 + 1), ℎ𝑘

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
. (12)

Then 𝐺 is a subgraph of either 𝐻𝑛,𝑑 or 𝐾 ′
𝑛,𝑑

.

Proof. Take an edge-maximum counterexample 𝐺 (so we may assume 𝐺 is saturated). By Lemma
9, 𝐺 has a set 𝐷 of 𝑟 ≤ ⌊(𝑛 − 1)∕2⌋ vertices such that 𝐺 −𝐷 is a complete graph. If 𝑟 ≥ 𝑑 + 1, then
𝑁𝑘(𝐺) ≤ max{ℎ𝑘(𝑛, 𝑑 + 1), ℎ𝑘(𝑛, ⌊ 𝑛−1

2 ⌋)}. Thus 𝑟 = 𝑑, and we may apply Lemma 10. ■
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FÜREDI ET AL. 187

6 DISCUSSION AND PROOF OF THEOREM 7

One can try to refine Theorem 3 in the following direction: What happens when we consider 𝑛-vertex
nonhamiltonian graphs with minimum degree at least 𝑑 and less than 𝑒(𝑛, 𝑑 + 1) but more than 𝑒(𝑛, 𝑑 +
2) edges?

Note that for 𝑑 < 𝑑0(𝑛) − 2,

𝑒(𝑛, 𝑑) − 𝑒(𝑛, 𝑑 + 2) = 2𝑛 − 6𝑑 − 7,

which is greater than 𝑛. Theorem 7 answers the question above in a more general form—in terms of
𝑘-cliques instead of edges. In other words, we classify all 𝑛-vertex nonhamiltonian graphs with more
than max{ℎ𝑘(𝑛, 𝑑 + 2), ℎ𝑘(𝑛, ⌊ 𝑛−1

2 ⌋)} copies of 𝐾𝑘.
As in Lemma 14, such 𝐺 can be a subgraph of 𝐻𝑛,𝑑 or 𝐾 ′

𝑛,𝑑
. Also, 𝐺 can be a subgraph of 𝐻𝑛,𝑑+1 or

𝐾 ′
𝑛,𝑑+1. Recall the graphs 𝐻𝑛,𝑑, 𝐾

′
𝑛,𝑑

,𝐻 ′
𝑛,𝑑

, 𝐺′
𝑛,2, and 𝐹𝑛,3 defined in the first two sections of this article

and the statement of Theorem 3:

Theorem 7. Let 𝑛 ≥ 3 and 1 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋. Suppose that 𝐺 is an 𝑛-vertex nonhamiltonian graph with

minimum degree 𝛿(𝐺) ≥ 𝑑 such that exists a 𝑘 ≥ 2 for which

𝑁𝑘(𝐺) > max
{
ℎ𝑘(𝑛, 𝑑 + 2), ℎ𝑘

(
𝑛,

⌊
𝑛 − 1
2

⌋)}
.

Let 𝑛,𝑑 ∶= {𝐻𝑛,𝑑,𝐻𝑛,𝑑+1, 𝐾
′
𝑛,𝑑

, 𝐾 ′
𝑛,𝑑+1,𝐻

′
𝑛,𝑑

}.

(i) If 𝑑 = 2, then 𝐺 is a subgraph of 𝐺′
𝑛,2 or of a graph in 𝑛,2;

(ii) if 𝑑 = 3, then 𝐺 is a subgraph of 𝐹𝑛,3 or of a graph in 𝑛,3;

(iii) if 𝑑 = 1 or 4 ≤ 𝑑 ≤ ⌊ 𝑛−1
2 ⌋, then 𝐺 is a subgraph of a graph in 𝑛,𝑑 .

Proof. Suppose 𝐺 is a counterexample to Theorem 7 with the most edges. Then 𝐺 is saturated. In
particular, degree condition (4) holds for 𝐺. So by Lemma 9, there exists an 𝑑 ≤ 𝑟 ≤ ⌊(𝑛 − 1)∕2⌋ such
that 𝑉 (𝐺) contains a subset 𝐷 of 𝑟 vertices of degree at most 𝑟 and 𝐺 −𝐷 is a complete graph.

If 𝑟 ≥ 𝑑 + 2, then because ℎ𝑘(𝑛, 𝑥) is convex, 𝑁𝑘(𝐺) ≤ ℎ𝑘(𝑛, 𝑟) ≤ max{ℎ𝑘(𝑛, 𝑑 + 2), ℎ𝑘(𝑛, ⌊ 𝑛−1
2 ⌋)}.

Therefore either 𝑟 = 𝑑 or 𝑟 = 𝑑 + 1. In the case that 𝑟 = 𝑑 (and so 𝑟 = 𝛿(𝐺)), Lemma 10 implies that
𝐺 ⊆ 𝐻𝑛,𝑑 . So we may assume that 𝑟 = 𝑑 + 1.

If 𝛿(𝐺) ≥ 𝑑 + 1, then we simply apply Theorem 3 with 𝑑 + 1 in place of 𝑑 and get 𝐺 ⊆ 𝐻𝑛,𝑑+1 or
𝐺 ⊆ 𝐾 ′

𝑛,𝑑+1. So, from now on we may assume

𝛿(𝐺) = 𝑑. (13)

Now (13) implies that our theorem holds for 𝑑 = 1, since each graph with minimum degree exactly
1 is a subgraph of 𝐻𝑛,1. So, below 2 ≤ 𝑑 ≤ ⌊ 𝑛−1

2 ⌋.
Let 𝑁 ∶= 𝑁(𝐷) −𝐷 ⊆ 𝑉 (𝐺) −𝐷. The next claim will be used many times throughout the proof.

Lemma 15.

(a) If there exists a vertex 𝑣 ∈ 𝐷 such that 𝑑(𝑣) = 𝑑 + 1, then 𝑁(𝑣) −𝐷 = 𝑁 .
(b) If there exists a vertex 𝑢 ∈ 𝑁 such that 𝑢 has at least 2 neighbors in 𝐷, then 𝑢 is adjacent to all

vertices in 𝐷.
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188 FÜREDI ET AL.

d − 1 d + 1

F I G U R E 5 𝐺′
𝑛,𝑑

Proof. If 𝑣 ∈ 𝐷, 𝑑(𝑣) = 𝑑 + 1 and some 𝑢 ∈ 𝑁 is not adjacent to 𝑣, then 𝑑(𝑣) + 𝑑(𝑢) ≥ 𝑑 + 1 + (𝑛 −
𝑑 − 2) + 1 = 𝑛. A contradiction to (4) proves (a).

Similarly, if 𝑢 ∈ 𝑁 has at least two neighbors in 𝐷 but is not adjacent to some 𝑣 ∈ 𝐷, then 𝑑(𝑣) +
𝑑(𝑢) ≥ 𝑑 + (𝑛 − 𝑑 − 2) + 2 = 𝑛, again contradicting (4). ■

Define 𝑆 ∶= {𝑢 ∈ 𝑉 (𝐺) −𝐷 ∶ 𝑢 ∈ 𝑁(𝑣) for all 𝑣 ∈ 𝐷}, 𝑠 ∶= |𝑆|, and 𝑆′ ∶= 𝑉 (𝐺) −𝐷 − 𝑆. By
Lemma 15 (b), each vertex in 𝑆′ has at most one neighbor in 𝐷. So, for each 𝑣 ∈ 𝐷, call the neighbors
of 𝑣 in 𝑆′ the private neighbors of 𝑣.

We claim that

𝐷 i𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡. (14)

Indeed, assume 𝐷 is independent. If there exists a vertex 𝑣 ∈ 𝐷 with 𝑑(𝑣) = 𝑑 + 1, then by
Lemma 15 (a), 𝑁(𝑣) −𝐷 = 𝑁 . So, because 𝐷 is independent, 𝐺 ⊆ 𝐻𝑛,𝑑+1. Assume now that every
vertex 𝑣 ∈ 𝐷 has degree 𝑑, and let 𝐷 = {𝑣1,… , 𝑣𝑑+1}.

If 𝑠 ≥ 𝑑, then because each 𝑣𝑖 ∈ 𝐷 has degree 𝑑, 𝑠 = 𝑑 and 𝑁 = 𝑆. Then 𝐺 ⊆ 𝐻𝑛,𝑑+1. If 𝑠 ≤ 𝑑 − 2,
then each vertex 𝑣𝑖 ∈ 𝐷 has at least two private neighbors in 𝑆′; call these private neighbors 𝑥𝑣𝑖

and
𝑦𝑣𝑖

. The path 𝑥𝑣1
𝑣1𝑦𝑣1

𝑥𝑣2
𝑣2𝑦𝑣2

… 𝑥𝑣𝑑+1
𝑣𝑑+1𝑦𝑣𝑑+1

contains all vertices in 𝐷 and can be extended to a
hamiltonian cycle of 𝐺, a contradiction.

Finally, suppose 𝑠 = 𝑑 − 1. Then every vertex 𝑣𝑖 ∈ 𝐷 has exactly one private neighbor. There-
fore 𝐺 = 𝐺′

𝑛,𝑑
where 𝐺′

𝑛,𝑑
is composed of a clique 𝐴 of order 𝑛 − 𝑑 − 1 and an independent set

𝐷 = {𝑣1,… , 𝑣𝑑+1}, and there exists a set 𝑆 ⊂ 𝐴 of size 𝑑 − 1 and distinct vertices 𝑧1,… , 𝑧𝑑+1 such
that for 1 ≤ 𝑖 ≤ 𝑑 + 1, 𝑁(𝑣𝑖) = 𝑆 ∪ 𝑧𝑖. Graph 𝐺′

𝑛,𝑑
is illustrated in Fig. 5.

For 𝑑 = 2, we conclude that 𝐺 ⊆ 𝐺′
𝑛,2, as claimed, and for 𝑑 ≥ 3, we get a contradiction since 𝐺′

𝑛,𝑑

is hamiltonian. This proves (14).
Call a vertex 𝑣 ∈ 𝐷 open if it has at least two private neighbors, half-open if it has exactly one

private neighbor, and closed if it has no private neighbors.
We say that paths 𝑃1,… , 𝑃𝑞 partition 𝐷, if these paths are vertex-disjoint and 𝑉 (𝑃1) ∪… ∪ 𝑉 (𝑃𝑞) =

𝐷. The idea of the proof is as follows: because 𝐺 −𝐷 is a complete graph, each path with endpoints in
𝐺 −𝐷 that covers all vertices of 𝐷 can be extended to a hamiltonian cycle of 𝐺. So such a path does
not exist, which implies that too few paths cannot partition 𝐷:

Lemma 16. If 𝑠 ≥ 2 then the minimum number of paths in 𝐺[𝐷] partitioning 𝐷 is at least 𝑠.
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FÜREDI ET AL. 189

Proof. Suppose 𝐷 can be partitioned into 𝓁 ≤ 𝑠 − 1 paths 𝑃1,… , 𝑃𝓁 in 𝐺[𝐷]. Let 𝑆 = {𝑧1,… , 𝑧𝑠}.
Then 𝑃 = 𝑧1𝑃1𝑧2 … 𝑧𝓁𝑃𝓁𝑧𝓁+1 is a path with endpoints in 𝑉 (𝐺) −𝐷 that covers 𝐷. Because 𝑉 (𝐺) −𝐷

forms a clique, we can find a 𝑧1, 𝑧𝓁+1 - path 𝑃 ′ in 𝐺 −𝐷 that covers 𝑉 (𝐺) −𝐷 − {𝑧2,… , 𝑧𝓁}. Then
𝑃 ∪ 𝑃 ′ is a hamiltonian cycle of 𝐺, a contradiction. ■

Sometimes, to get a contradiction with Lemma 16 we will use our information on vertex degrees in
𝐺[𝐷]:

Lemma 17. Let 𝐻 be a graph on 𝑟 vertices such that for every nonedge 𝑥𝑦 of 𝐻 , 𝑑(𝑥) + 𝑑(𝑦) ≥ 𝑟 − 𝑡

for some 𝑡. Then 𝑉 (𝐻) can be partitioned into a set of at most 𝑡 paths. In other words, there exist 𝑡

disjoint paths 𝑃1,… , 𝑃𝑡 with 𝑉 (𝐻) =
⋃𝑡

𝑖=1 𝑉 (𝑃𝑖).

Proof. Construct the graph 𝐻 ′ by adding a clique 𝑇 of size 𝑡 to 𝐻 so that every vertex of 𝑇 is adjacent
to each vertex in 𝑉 (𝐻). For each nonedge 𝑥, 𝑦 ∈ 𝐻 ′,

𝑑𝐻 ′ (𝑥) + 𝑑𝐻 ′ (𝑦) ≥ (𝑟 − 𝑡) + 𝑡 + 𝑡 = 𝑟 + 𝑡 = |𝑉 (𝐻 ′)|.
By Ore's theorem, 𝐻 ′ has a hamiltonian cycle 𝐶 ′. Then 𝐶 ′ − 𝑇 is a set of at most 𝑡 paths in 𝐻 that
cover all vertices of 𝐻 . ■

The next simple fact will be quite useful.

Lemma 18. If 𝐺[𝐷] contains an open vertex, then all other vertices are closed.

Proof. Suppose 𝐺[𝐷] has an open vertex 𝑣 and another open or half-open vertex 𝑢. Let 𝑣′, 𝑣′′ be some
private neighbors of 𝑣 in 𝑆′ and 𝑢′ be a neighbor of 𝑢 in 𝑆′. By the maximality of 𝐺, graph 𝐺 + 𝑣𝑢′ has
a hamiltonian cycle. In other words, 𝐺 has a hamiltonian path 𝑣1𝑣2 … 𝑣𝑛, where 𝑣1 = 𝑣 and 𝑣𝑛 = 𝑢′.
Let 𝑉 ′ = {𝑣𝑖 ∶ 𝑣𝑣𝑖+1 ∈ 𝐸(𝐺)}. Since G has no hamiltonian cycle, 𝑉 ′ ∩𝑁(𝑢′) = ∅.

Since 𝑑(𝑣) + 𝑑(𝑢′) = 𝑛 − 1, we have 𝑉 (𝐺) = 𝑉 ′ ∪𝑁(𝑢′) + 𝑢′. Suppose that 𝑣′ = 𝑣𝑖 and 𝑣′′ = 𝑣𝑗 .
Then 𝑣𝑖−1, 𝑣𝑗−1 ∈ 𝑉 ′, and 𝑣𝑖−1, 𝑣𝑗−1 ∉ 𝑁(𝑢′). But among the neighbors of 𝑣𝑖 and 𝑣𝑗 , only 𝑣 is not
adjacent to 𝑢′, a contradiction. ■

Now we show that 𝑆 is nonempty and not too large.

Lemma 19. 𝑠 ≥ 1.

Proof. Suppose 𝑆 = ∅. If 𝐷 has an open vertex 𝑣, then by Lemma 18, all other vertices are closed. In
this case, 𝑣 is the only vertex of 𝐷 with neighbors outside of 𝐷, and hence 𝐺 ⊆ 𝐾 ′

𝑛,𝑑
, in which 𝑣 is the

cut vertex. Also if 𝐷 has at most one half-open vertex 𝑣, then similarly 𝐺 ⊆ 𝐾 ′
𝑛,𝑑

.
So suppose that 𝐷 contains no open vertices but has two half-open vertices 𝑢 and 𝑣 with private

neighbors 𝑧𝑢 and 𝑧𝑣, respectively. Then 𝛿(𝐺[𝐷]) ≥ 𝑑 − 1. By Pósa's Theorem, if 𝑑 ≥ 4, then 𝐺[𝐷]
has a hamiltonian 𝑣, 𝑢-path. This path together with any hamiltonian 𝑧𝑢, 𝑧𝑣-path in the complete graph
𝐺 −𝐷 and the edges 𝑢𝑧𝑢 and 𝑣𝑧𝑣 forms a hamiltonian cycle in 𝐺, a contradiction.

If 𝑑 = 3, then by Dirac's Theorem, 𝐺[𝐷] has a hamiltonian cycle, i.e. a 4-cycle, say 𝐶 . If we can
choose our half-open 𝑣 and 𝑢 consecutive on 𝐶 , then 𝐶 − 𝑢𝑣 is a hamiltonian 𝑣, 𝑢-path in 𝐺[𝐷], and
we finish as in the previous paragraph. Otherwise, we may assume that 𝐶 = 𝑣𝑥𝑢𝑦, where 𝑥 and 𝑦 are
closed. In this case, 𝑑𝐺[𝐷](𝑥) = 𝑑𝐺[𝐷](𝑦) = 3, thus 𝑥𝑦 ∈ 𝐸(𝐺). So we again have a hamiltonian 𝑣, 𝑢-
path, namely 𝑣𝑥𝑦𝑢, in 𝐺[𝐷]. Finally, if 𝑑 = 2, then |𝐷| = 3, and 𝐺[𝐷] is either a 3-vertex path whose
endpoints are half-open or a 3-cycle. In both cases, 𝐺[𝐷] again has a hamiltonian path whose ends are
half-open. ■

Lemma 20. 𝑠 ≤ 𝑑 − 3.

Proof. Since by (13), 𝛿(𝐺) = 𝑑, we have 𝑠 ≤ 𝑑. Suppose 𝑠 ∈ {𝑑 − 2, 𝑑 − 1, 𝑑}.
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190 FÜREDI ET AL.

Case 1: All vertices in 𝐷 have degree 𝑑.

Case 1.1: 𝑠 = 𝑑. Then 𝐺 ⊆ 𝐻𝑛,𝑑+1.

Case 1.2: 𝑠 = 𝑑 − 1. In this case, each vertex in graph 𝐺[𝐷] has degree 0 or 1. By (14), 𝐺[𝐷] induces
a nonempty matching, possibly with some isolated vertices. Let 𝑚 denote the number of
edges in 𝐺[𝐷].

If 𝑚 ≥ 3, then the number of components in 𝐺[𝐷] is less than 𝑠, contradicting Lemma 16. Sup-
pose now 𝑚 = 2, and the edges in the matching are 𝑥1𝑦1 and 𝑥2𝑦2. Then 𝑑 ≥ 3. If 𝑑 = 3, then
𝐷 = {𝑥1, 𝑥2, 𝑦1, 𝑦2} and 𝐺 = 𝐹𝑛,3 (see Fig 3 (right)). If 𝑑 ≥ 4, then 𝐺[𝐷] has an isolated vertex, say 𝑥3.
This 𝑥3 has a private neighbor 𝑤 ∈ 𝑆′. Then |𝑆 +𝑤| = 𝑑 that is more than the number of components
of 𝐺[𝐷] and we can construct a path from 𝑤 to 𝑆 visiting all components of 𝐺[𝐷].

Finally, suppose 𝐺[𝐷] has exactly one edge, say 𝑥1𝑦1. Recall that 𝑑 ≥ 2. Graph 𝐺[𝐷] has 𝑑 − 1
isolated vertices, say 𝑥2,… , 𝑥𝑑 . Each of 𝑥𝑖 for 2 ≤ 𝑖 ≤ 𝑑 has a private neighbor 𝑢𝑖 in 𝑆′. Let 𝑆 =
{𝑧1,… , 𝑧𝑑−1}. If 𝑑 = 2, then 𝑆 = {𝑧1}, 𝑁(𝐷) = {𝑧1, 𝑢2} and hence 𝐺 ⊂ 𝐻 ′

𝑛,2. So in this case the
theorem holds for 𝐺. If 𝑑 ≥ 3, then 𝐺 contains a path 𝑢𝑑𝑥𝑑𝑧𝑑−1𝑥𝑑−1𝑧𝑑−2𝑥𝑑−2… 𝑧2𝑥1𝑦1𝑧1𝑥2𝑢2 from
𝑢𝑑 to 𝑢2 that covers 𝐷.

Case 1.3: 𝑠 = 𝑑 − 2. Since 𝑠 ≥ 1, 𝑑 ≥ 3. Every vertex in 𝐺[𝐷] has degree at most 2, i.e. 𝐺[𝐷] is a
union of paths, isolated vertices, and cycles. Each isolated vertex has at least two private
neighbors in 𝑆′. Each endpoint of a path in 𝐺[𝐷] has one private neighbor in 𝑆′. Thus we
can find disjoint paths from 𝑆′ to 𝑆′ that cover all isolated vertices and paths in 𝐺[𝐷] and
all are disjoint from 𝑆. Hence if the number 𝑐 of cycles in 𝐺[𝐷] is less than 𝑑 − 2, then
we have a set of disjoint paths from 𝑉 (𝐺) −𝐷 to 𝑉 (𝐺) −𝐷 that cover 𝐷 (and this set can
be extended to a hamiltonian cycle in 𝐺). Since each cycle has at least three vertices and|𝐷| = 𝑑 + 1, if 𝑐 ≥ 𝑑 − 2, then (𝑑 + 1)∕3 ≥ 𝑑 − 2, which is possible only when 𝑑 < 4, i.e.
𝑑 = 3. Moreover, then 𝐺[𝐷] = 𝐶3 ∪𝐾1 and 𝑆 = 𝑁 is a single vertex. But then 𝐺 ⊆ 𝐾 ′

𝑛,3.

Case 2: There exists a vertex 𝑣∗ ∈ 𝐷 with 𝑑(𝑣∗) = 𝑑 + 1. By Lemma 15 (a), 𝑁 = 𝑁(𝑣∗) −𝐷, and so
𝐺 has at most one open or half-open vertex. Furthermore,

if G has an open or half - open vertex, then it is 𝑣∗, a𝑛𝑑 𝑏𝑦𝐿𝑒𝑚𝑚𝑎15, 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑜𝑡ℎ𝑒𝑟

v𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑 + 1. (15)

Case 2.1: 𝑠 = 𝑑. If 𝑣∗ is not closed, then it has a private neighbor 𝑥 ∈ 𝑆′, and the neighborhood of
each other vertex of 𝐷 is exactly 𝑆. Furthermore, since 𝑑(𝑣∗) = 𝑑 + 1, 𝑣∗ has no neighbors
outside of 𝐷 + {𝑥}. This implies that 𝐷 is independent, contradicting (14). If 𝑣∗ is closed
(i.e. 𝑁 = 𝑆), then 𝐺[𝐷] has maximum degree 1. Therefore 𝐺[𝐷] is a matching with at least
one edge (coming from 𝑣∗) plus some isolated vertices. If this matching has at least two
edges, then the number of components in 𝐺[𝐷] is less than 𝑠, contradicting Lemma 16. If
𝐺[𝐷] has exactly one edge, then 𝐺 ⊆ 𝐻 ′

𝑛,𝑑
.

Case 2.2: 𝑠 = 𝑑 − 1. If 𝑣∗ is open, then 𝑑𝐺[𝐷](𝑣∗) = 0 and by (15), each other vertex in 𝐷 has exactly
one neighbor in 𝐷. In particular, 𝑑 is even. Therefore 𝐺[𝐷 − 𝑣∗] has 𝑑∕2 components. When
𝑑 ≥ 3 and 𝑑 is even, 𝑑∕2 ≤ 𝑠 − 1 and we can find a path from 𝑆 to 𝑆 that covers 𝐷 − 𝑣∗,
and extend this path using two neighbors of 𝑣∗ in 𝑆′ to a path from 𝑉 (𝐺) −𝐷 to 𝑉 (𝐺) −𝐷
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FÜREDI ET AL. 191

covering 𝐷. Suppose 𝑑 = 2, 𝐷 = {𝑣∗, 𝑥, 𝑦} and 𝑆 = {𝑧}. Then 𝑧 is a cut vertex separating
{𝑥, 𝑦} from the rest of 𝐺, and hence 𝐺 ⊆ 𝐾 ′

𝑛,2.
If 𝑣∗ is half-open, then by (15), each other vertex in 𝐷 is closed and hence has exactly
one neighbor in 𝐷. Let 𝑥 ∈ 𝑆′ be the private neighbor of 𝑣∗. Then 𝐺[𝐷] is 1-regular and
therefore has exactly (𝑑 + 1)∕2 components, in particular, 𝑑 is odd. If 𝑑 ≥ 2 and is odd, then
(𝑑 + 1)∕2 ≤ 𝑑 − 1 = 𝑠, and so we can find a path from 𝑥 to 𝑆 that covers 𝐷.
Finally, if 𝑣∗ is closed, then by (15), every vertex of 𝐺[𝐷] is closed and has degree 1 or 2,
and 𝑣∗ has degree 2 in 𝐺[𝐷]. Then 𝐺[𝐷] has at most ⌊𝑑∕2⌋ components, which is less than
𝑠 when 𝑑 ≥ 3. If 𝑑 = 2, then 𝑠 = 1 and the unique vertex 𝑧 in 𝑆 is a cut vertex separating 𝐷

from the rest of 𝐺. This means 𝐺 ⊆ 𝐾 ′
𝑛,3.

Case 2.3: 𝑠 = 𝑑 − 2. Since 𝑠 ≥ 1, 𝑑 ≥ 3. If 𝑣∗ is open, then 𝑑𝐺[𝐷](𝑣∗) = 1 and by (15), each other
vertex in 𝐷 is closed and has exactly two neighbors in 𝐷. But this is not possible, since
the degree sum of the vertices in 𝐺[𝐷] must be even. If 𝑣∗ is half-open with a neighbor
𝑥 ∈ 𝑆′, then 𝐺[𝐷] is 2-regular. Thus 𝐺[𝐷] is a union of cycles and has at most ⌊(𝑑 + 1)∕3⌋
components. When 𝑑 ≥ 4, this is less than 𝑠, contradicting Lemma 16. If 𝑑 = 3, then 𝑠 = 1
and the unique vertex 𝑧 in 𝑆 is a cut vertex separating 𝐷 from the rest of 𝐺. This means
𝐺 ⊆ 𝐾 ′

𝑛,4.

If 𝑣∗ is closed, then 𝑑𝐺[𝐷](𝑣∗) = 3 and 𝛿(𝐺[𝐷]) ≥ 2. So, for any vertices 𝑥, 𝑦 in 𝐺[𝐷],

𝑑𝐺[𝐷](𝑥) + 𝑑𝐺[𝐷](𝑦) ≥ 4 ≥ (𝑑 + 1) − (𝑑 − 2 − 1) = |𝑉 (𝐺[𝐷])| − (𝑠 − 1).

By Lemma 17, if 𝑠 ≥ 2, then we can partition 𝐺[𝐷] into 𝑠 − 1 paths 𝑃1,… , 𝑃𝑠−1. This would contradict
Lemma 16. So suppose 𝑠 = 1 and 𝑑 = 3. Then as in the previous paragraph, 𝐺 ⊆ 𝐾 ′

𝑛,4. ■

Next, we will show that we cannot have 2 ≤ 𝑠 ≤ 𝑑 − 3.

Lemma 21. 𝑠 = 1.

Proof. Suppose 𝑠 = 𝑑 − 𝑘 where 3 ≤ 𝑘 ≤ 𝑑 − 2.

Case 1: 𝐺[𝐷] has an open vertex 𝑣. By Lemma 18, every other vertex in 𝐷 is closed. Let 𝐺′ = 𝐺[𝐷] −
𝑣. Then 𝛿(𝐺′) ≥ 𝑘 − 1 and |𝑉 (𝐺′)| = 𝑑. In particular, for any 𝑥, 𝑦 ∈ 𝐷 − 𝑣,

𝑑𝐺′ (𝑥) + 𝑑𝐺′ (𝑦) ≥ 2𝑘 − 2 ≥ 𝑘 + 1 = 𝑑 − (𝑑 − 𝑘 − 1) = |𝑉 (𝐺′)| − (𝑠 − 1).

By Lemma 17, we can find a path from 𝑆 to 𝑆 in 𝐺 containing all of 𝑉 (𝐺′). Because 𝑣 is
open, this path can be extended to a path from 𝑉 (𝐺) −𝐷 to 𝑉 (𝐺) −𝐷 including 𝑣, and then
extended to a hamiltonian cycle of 𝐺.

Case 2: 𝐷 has no open vertices and 4 ≤ 𝑘 ≤ 𝑑 − 2. Then 𝛿(𝐺[𝐷]) ≥ 𝑘 − 1 and again for any 𝑥, 𝑦 ∈ 𝐷,
𝑑𝐺[𝐷](𝑥) + 𝑑𝐺[𝐷](𝑦) ≥ 2𝑘 − 2. For 𝑘 ≥ 4, 2𝑘 − 2 ≥ 𝑘 + 2 = (𝑑 + 1) − (𝑑 − 𝑘 − 1) = |𝐷| −
(𝑠 − 1). Since 𝑘 ≤ 𝑑 − 2, by Lemma 17, 𝐺[𝐷] can be partitioned into 𝑠 − 1 paths, contra-
dicting Lemma 16.

Case 3: 𝐷 has no open vertices and 𝑠 = 𝑑 − 3 ≥ 2. If there is at most one half-open vertex, then for
any nonadjacent vertices 𝑥, 𝑦 ∈ 𝐷, 𝑑𝐺[𝐷](𝑥) + 𝑑𝐺[𝐷](𝑦) ≥ 2 + 3 = 5 ≥ (𝑑 + 1) − (𝑑 − 3 − 1),
and we are done as in Case 2.

So we may assume 𝐺 has at least two half-open vertices. Let 𝐷′ be the set of half-open vertices in 𝐷.
If 𝐷′ ≠ 𝐷, let 𝑣∗ ∈ 𝐷 −𝐷′. Define a subset 𝐷− as follows: If |𝐷′| ≥ 3, then let 𝐷− = 𝐷′, otherwise,
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192 FÜREDI ET AL.

let 𝐷− = 𝐷′ + 𝑣∗. Let 𝐺′ be the graph obtained from 𝐺[𝐷] by adding a new vertex 𝑤 adjacent to
all vertices in 𝐷−. Then |𝑉 (𝐺′)| = 𝑑 + 2 and 𝛿(𝐺′) ≥ 3. In particular, for any 𝑥, 𝑦 ∈ 𝑉 (𝐺′), 𝑑𝐺′ (𝑥) +
𝑑𝐺′ (𝑦) ≥ 6 ≥ (𝑑 + 2) − (𝑑 − 3 − 1) = |𝑉 (𝐺′)| − (𝑠 − 1). By Lemma 17, 𝑉 (𝐺′) can be partitioned into
𝑠 − 1 disjoint paths 𝑃1,… , 𝑃𝑠−1. We may assume that 𝑤 ∈ 𝑃1. If 𝑤 is an endpoint of 𝑃1, then 𝐷 can
also be partitioned into 𝑠 − 1 disjoint paths 𝑃1 −𝑤, 𝑃2,… , 𝑃𝑠−1 in 𝐺[𝐷], a contradiction to Lemma 16.

Otherwise, let 𝑃1 = 𝑥1,… , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝑘 where 𝑥𝑖 = 𝑤. Since every vertex in (𝐷−) − 𝑣∗ is
half-open and 𝑁𝐺′ (𝑤) = 𝐷−, we may assume that 𝑥𝑖−1 is half-open and thus has a neighbor 𝑦 ∈ 𝑆′.
Let 𝑆 = {𝑧1,… , 𝑧𝑑−3}. Then

𝑦𝑥𝑖−1𝑥𝑖−2… 𝑥1𝑧1𝑥𝑖+1… 𝑥𝑘𝑧2𝑃2𝑧3 … 𝑧𝑑−4𝑃𝑑−4𝑧𝑑−3

is a path in 𝐺 with endpoints in 𝑉 (𝐺) −𝐷 that covers 𝐷. ■

Now, we may finish the proof of Theorem 7. By Lemmas 19–21, 𝑠 = 1, say, 𝑆 = {𝑧1}. Furthermore,
by Lemma 20,

𝑑 ≥ 3 + 𝑠 = 4. (16)

Case 1: 𝐷 has an open vertex 𝑣. Then by Lemma 18, every other vertex of 𝐷 is closed. Since 𝑠 = 1,
each 𝑢 ∈ 𝐷 − 𝑣 has degree 𝑑 − 1 in 𝐺[𝐷]. If 𝑣 has no neighbors in 𝐷, then 𝐺[𝐷] − 𝑣 is a
clique of order 𝑑, and 𝐺 ⊆ 𝐾 ′

𝑛,𝑑
. Otherwise, since 𝑑 ≥ 4, by Dirac's Theorem, 𝐺[𝐷] − 𝑣 has

a hamiltonian cycle, say 𝐶 . Using 𝐶 and an edge from 𝑣 to 𝐶 , we obtain a hamiltonian path
𝑃 in 𝐺[𝐷] starting with 𝑣. Let 𝑣′ ∈ 𝑆′ be a neighbor of 𝑣. Then 𝑣′𝑃𝑧1 is a path from 𝑆′ to 𝑆

that covers 𝐷, a contradiction.

Case 2: 𝐷 has a half-open vertex but no open vertices. It is enough to prove that

𝐺[𝐷] has a hamiltonian path 𝑃 starting with a half-open vertex 𝑣, (17)

since such a 𝑃 can be extended to a hamiltonian cycle in 𝐺 through 𝑧1 and the private neighbor
of 𝑣. If 𝑑 ≥ 5, then for any 𝑥, 𝑦 ∈ 𝐷,

𝑑𝐺[𝐷](𝑥) + 𝑑𝐺[𝐷](𝑦) ≥ 𝑑 − 2 + 𝑑 − 2 = 2𝑑 − 4 ≥ 𝑑 + 1 = |𝑉 (𝐺[𝐷])|.
Hence by Ore's Theorem, 𝐺[𝐷] has a hamiltonian cycle, and hence (17) holds.
If 𝑑 < 5 then by (16), 𝑑 = 4. So 𝐺[𝐷] has five vertices and minimum degree at least two. By
Lemma 17, we can find a hamiltonian path 𝑃 of 𝐺[𝐷], say 𝑣1𝑣2𝑣3𝑣4𝑣5. If at least one of 𝑣1, 𝑣5
is half-open or 𝑣1𝑣5 ∈ 𝐸(𝐺), then (17) holds. Otherwise, each of 𝑣1, 𝑣5 has three neighbors
in 𝐷, which means 𝑁(𝑣1) ∩𝐷 = 𝑁(𝑣5) ∩𝐷 = {𝑣2, 𝑣3, 𝑣4}. But then 𝐺[𝐷] has hamiltonian
cycle 𝑣1𝑣2𝑣5𝑣4𝑣3𝑣1, and again (17) holds.

Case 3: All vertices in 𝐷 are closed. Then 𝐺 ⊆ 𝐾 ′
𝑛,𝑑+1, a contradiction. This proves the theorem. ■

7 COMMENTS

• It was shown in Section 4 that the right order of magnitude of 𝑛0(𝑑, 𝑡) in Theorem 4 when 𝑑 = 𝑂(𝑡)
is 𝑑𝑡. We can also show this when 𝑑 = 𝑂(𝑡3∕2). It could be that 𝑑𝑡 is the right order of magnitude of
𝑛0(𝑑, 𝑡) for all 𝑑 and 𝑡.
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• Very recently, Ma and Ning [11] sharpened Theorem 3 in a direction different from our article: they
proved a stability result for graphs of prescribed circumference and minimum degree. It is still open
to prove a similar generalization of the second step of stability akin to Theorem 7.
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